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Explanation of NeRFs: Neural Radiance Fields. 
 

Taskeen Jafri 

 

Abstract. I will be explaining Neural Radiance Fields, also known as NeRF. [1] NeRFs use a method that 

achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying 

continuous volumetric scene function using a sparse set of input views. It’s algorithm represents a scene using a 

fully-connected (nonconvolutional) deep network, whose input is a single continuous 5D coordinate (spatial 

location (x; y; z) and viewing direction (𝜃,𝜙)) and whose output is the volume density and view-dependent 

emitted radiance at that spatial location. The model synthesizes views by querying 5D coordinates along camera 

rays and use classic volume rendering techniques to project the output colors and densities into an image. Since 

volume rendering is naturally differentiable, the only input required to optimize the representation for the model is 

a set of images with known camera poses.  

 

 

 

1. Introduction. 

 

NeRFs are modeling softwares which take multiple 2D images and output a 3D model. Basically we take images of the 

object from all around it, and input this set of images into the NeRF model. It will process these images and give a 

stunning, high quality 3D model. Of course, images can’t be taken from all 360 degrees around an object. However, the 

speciality of NeRF is, it gives the output such that it can generate new views by itself! By that, I mean that the model can 

generate an image from a new viewpoint for the same object, even those not included in the input dataset. 

It is highly important and has multiple applications, such as video games, or computer graphics in general, and Virtual 

Reality.  

 

In this context, radiance means the intensity and colour of light at a particular point in the scene. So, radiance is 

just the RGB colour of the point in a scene.  

 

NeRFs are multi-view consistent, meaning that when the same point is rendered from different views, it gives 

the same output. 

 

2. NeRF Mechanism 

 

One thing to remember in a NeRF is that the weights in a NeRF differ from that of a, say, CNN. In NeRFs, 

weights represent the scene itself, whereas in CNNs, the weights determine the contribution of each neuron to 

the overall output. Weights in a NeRF are learnt by optimizing the radiance values, i.e., by minimizing the 

difference between calculated and ground truth values. 

We give the model the 2D images along with the camera poses (positions and orientations), and the model 

converts the 2D image pixels to 3D positions (x,y,z), along with the position and orientation (𝜃,𝜙), hence 

making it a 5D function. (Also, the poses are generated using SfM software.) This 5D function is passed 

through the NeRF:  

 

https://arxiv.org/abs/2003.08934


TASKEEN JAFRI 2 

 

(image taken directly from the original paper) 

 
The input is (x,y,z,𝜃,𝜙), where the position is called ‘x’, and orientation is called ‘d’. So, x is (x,y,z) and d is 

(𝜃,𝜙). The input, (x,y,z) and (𝜃,𝜙), is passed through the function, F𝚹, and the model converts this input to 

RGB, along with density 𝜎, which shows whether the space at a particular point is opaque, translucent, 

transparent, etc. 

 

The mechanism is, basically the model takes a 2D image, and constructs a number of camera rays from that 

image. Each camera ray has a specified number of randomly sampled ‘points’ in it. When generating a new 

viewpoint, the model has to evaluate what will be there in place of every pixel (for the scene). This is done by 

evaluating the radiance and density at every point in a camera ray generated from an image, for multiple 

images. However, this is computationally extremely expensive and could take a long time to generate this 

viewpoint. So we specify the number of sample points in every camera ray. More number of sample point = 

high resolution, but longer processing time. The original code specified the number of sample points as 1024 in 

every camera ray, using the ‘N_rand = 1024’ command.  

 

Here is a bit of visual representation: 

   
You can see the red camera ray originating from image ‘1’ while the blue camera ray originates from image 

‘2’. The black points are the sample points, per ray. These sampled points are then passed through the function 

F𝚹, which generates radiance and density at those locations. 

 

One great idea applied while generating new views, the developers made NeRFs multi-view consistent by 

making the density, 𝜎, dependant only on ‘x’, whereas the colours, RGB, depend both on ‘x’ and ‘d’.  
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2.1 Rendering method  

 

While integrating the sample points for the radiance at each point, the NeRF model uses quadrature, 

specifically, stratified quadrature. Between deterministic quadrature and stratified quadrature, the basic 

difference is that deterministic quadrature performs well for smooth images but cannot process complex details, 

such as lego in this example. However, stratified sampling divides and samples each block and integrates them 

individually, hence, it can process extremely complex and fine details in the image. Stratified sampling is a bit 

heavy and hence takes a longer time to process, but for fine and detailed images, it’s worth it. 

 

2.2 Optimization techniques 

 

2.2.1 Positional Encoding: 

The authors also made use of the ‘Fourier Transform’, which they called ‘positional encoding’. Fourier 

Transform helps in calculation and approximation and, basically, the detailing of the final 3D scene. It uses 

sums of sine and cosine waves to compute the approximate output. Another important thing this does is, that it 

increases the number of dimensions! It has been observed that neural networks work significantly better with 

higher dimensional input. This is the function used: 

Ɣ(p) = (sin(20πp), cos(20πp),... sin(2L-1πp), cos(2L-1πp)). 

‘p’ is the input to the NeRF (Input meaning (x,d)), which is normalized to lie between [-1,1]. 

In the paper, the value of ‘L’ is 10 for Ɣ(x) {The spatial coordinates}, whereas the value of ‘L’ is 4 for Ɣ(d) 

{orientation}. 

The values of ‘L’ aren’t arbitrary, the authors tested higher, as well as lower values of ‘L’, and for these scenes, 

the above stated values give the best results. 

 

2.2.2 Hierarchal Volume Sampling: 

Another ‘trick’ used is ‘Hierarchical Volume sampling’. What this does is, it divides the space into sub-volumes 

and processes the scenes. While processing, it renders different volumes at different resolutions depending on 

their importance to the scene! The model first makes a coarse network, and then a fine (detailed) network. This 

helps in reducing computational load, and still delivers a quality output. 

 

Why, and how much these two affect the final result, can be seen from the picture belong, provided by the 

authors in their paper: 
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Without Positional Encoding, the final product is a kind of an oversmoothed image. We can also see how view 

dependance can show reflections when viewed from a certain angle, making it so much more realistic. 

 

2.2.3 Optimization: 

Now that we have discussed the optimization techniques, let's see how they are implemented in the NeRF 

model. The model needs to improve the scene it is working on. It starts by randomly selecting a group of 

camera rays from the entire dataset of images and pixels, and then improves that group in each step. The camera 

rays can come from any pixel in any of the images, and they are rays that extend from each pixel.  

[To clarify, the camera rays may come from any pixel in any of the images. Also, camera rays are the rays that 

are constructed and extend outwards from a pixel (or camera position). There may be any amount of camera 

rays from a pixel.] 

Here, the red- and blue- highlighted rays are the camera rays I’m talking about. 

 

So, we have the camera rays and hence, sample points to optimize. This is passed through Hierarchical Volume 

Sampling. For the coarse network made, it queries Nc, while for the fine (detailed) network, it queries Nc + Nf 

samples. These samples are basically just 3D points along with position and orientation. They are passed through volume 

rendering to estimate their colour and density. In the paper, the authors used Nc equal to 64, which Nf = 128 points.   

 

The optimization is carried out for the following function: 

Loss = ∑ [||Ĉc(r) – C(r)||22 + ||Ĉf(r) – C(r)||22] 

The subscript simply means the root of sum of the squares, i.e., it would be the same to write the above equation 

as: 

Loss = {∑ [||Ĉc(r) – C(r)||2 + ||Ĉf(r) – C(r)||2]}1/2 

I added the green highlight to show changes. 

Here, C(r), Ĉc(r), Ĉf(r) are ground truth, coarse network colour, and fine network colour repectively. Even 

though C(r) is ground truth, it is unknown to us, so we optimize all 3 variables, to minimize the loss. We 

optimize Ĉc(r), which belongs to coarse network, as well so that we can use the same weight distribution for our 

fine-detailed network.  

In the paper, the authors used an Adam optimizer, with initial learning rate as 5x10-4, which decays to 5x10-

5 over the course of optimization period. They used 100,000-300,000 iterations to construct each video, which 

took around 1-2 days on an NVIDIA V100 GPU.  

 

3.  The Layers 
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(image taken from the authors’ paper) 

 
The model contains 8 hidden layers. The green highlights show input vectors, hidden layers are shown in blue 

while red highlight shows output vectors. All layers are standard fully-connected layers, black arrows indicate 

layers with ReLU activations, orange arrows indicate layers with no activation, dashed black arrows indicate 

layers with sigmoid activation, and “+" denotes vector concatenation. 

“256” denoted the number of channels. There are 64 samples for coarse network (Nc), and 64+128 = 192 

samples for fine network (Nf), as mentioned previously, making it a total of 256 channels.  

The positional encoding of the input passes through 8 fully connected layers, each with 256 channels. The 

architecture of the model includes a skip connection at the 5th layer, which helps improve the recognition of the 

model and also helps prevent the vanishing gradient problem. It helps the network retain more information and 

improves image recognition. An additional layer outputs the density, 𝜎. All of this finally passes through a 

128-channel layer, then a sigmoid activation function and we get an RGB radiance output, at position x, as 

viewed with direction d. 
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